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Abs tract

This is a study of a random walk on the nonnegative integers

whose steps are controlled as follows. Upon arriving at a location

i, a pair of probabilities (p,q) is selected from a prescribed set,

a reward r(i,p,q) is received , and the next step takes the walk to

locations 1+1, i—i or i, with respective probabilities p, q and l—p—q

(when i=O these probabilities are p, 0 and l—p). This is repeated

indefinitely. A rule for successively selecting the probabilities

(p,q) is a control policy. We identify conditions on the rewards and

probabilities under which there exist monotonic optimal policies for

discounted and average rewards. For example, in one case it is optimal

to increase the probability of backward steps as the location i in-

creases. Our results are based on (1) a criterion for monotone optimal

policies, (2) a result describing when an upper envelope of concave

functions is concave, and (3) a relation between optimal policies for

the discounted and average reward criteria. Procedures for computing

optimal policies are also presented.

- - 
~~~~ ~. c ~~ofl ~~NTIS

SeCtI O R 0 
t)

~~~

~~~~~

- -



Optimal Control of Random Walks

by

Richard F. Serfozo , Syracuse University

1. In uç~~~ n

We shall study a controlled random walk on the nonnegative integers

that moves as follows. Upon arriving at a location I the following

events occur:

(1) A pair of probabilities (P~~~8
) is selec ted from the set

~~~~~‘ 
Think of the 

~~~~~~~ 
or the a ~ {l ,2, ...,

as the action taken. We assume that 0 < 1
~a 

+ q < 1, and at least one

of these is nonzero.

V 
(2) A real—valued reward r(i,a) is received .

(3) The next location of the walk Is determined by the transition

probabilities

p(i,a,i+l) = 

~a’ p( i,a,i—l) = q ,  p(i,a,i ) = 
~~~~~~~

when i > 1; and

p(0,a,l) 1
~a 

and p(O ,a,0) = when i0.

Tha t is, the step is of size +1, —l or 0 with respective probabilities

and 
~~~~~~ 

(except at location 0). The above series of events

is repeated Indefinitely.

A policy f for controlling this random walk (i.e. a rule for selecting

the (p ,q )) Is defined to be a mapping from the nonnegative integers

(the state space) to 11,2, . . .,  m} (the action space). Under the policy

This research was partially supported by Air Force Office of Scientific
Research Grant AFOSR—74—2627, and NSF Grant ENG 75—13653.



f the action f(i) Is taken, i.e. (Pf (~)~~ f (~)) is selected , whenever

the walk is In location I. We shall consider only these so—called

stationary deterministic policies. Nothing would be gained by considering

nonstatonary or randomized policies.

Each policy f , along with a rule for starting the process, deter-

mines a stochastic process {(X ,a): n ~ 0), where X is the location

of the walk at time n , and an 
= f(X ) ia the action taken. The expected

discounted reward over an infinite horizon Is

Vf
(i) E

f
(E a ’

~
’r(X

fl
,an)IXo i),

where 0 < ci < 1 is a discount factor. The average reward over an infinite

horizon is

•f
(i) - lim n 1 

E
f
(Lr (X k,ak)IX O i).
k0

A policy f* is called a—discounted optimal if

V
f*
(i) = sup Vf(i) for all i,

f

and f* is called average optimal if

•f*
(i) sup ~f

(I) for all i.
f

The aim is to find such policies. We shall call this decision process

a controlled random walk. It is a special case of a Markov decision

process, or a controlled Markov chain.

Decision processes that arise in practice often have inherent

properties that lead to nicely structured optimal policies. For example,

an optimal policy f(i) may be a monotone, unlmodal , or convex function

of I. Knowing that there is, say, an increasing optimal policy, then

the search for an optimal policy may be confined to the class of increasing

policies. An optimal policy might then be obtained by a simple ad 
hoc2



procedure , such as a calculus argument. This is especially important

for decision processes with infinite state spaces (like ours) where

optimal policies cannot be obtained by the standard procedures for

processes with finite state spaces. Structured policies are also

generally easier to implement than unstructured ones.

In this paper we show, under some very general conditions on the

rewards r(i,a) and the probabilities (p ,q), that it is (discounted

and average) optimal to “increase” the probability of backward movement

of the process as the location of the walk increases. We present a

similar result where it is optimal to “decrease” this probability.

We show how these results carry over to finite time horizons, and to

walks where the set of possible probabilities for a step depends on

the location where the step is taken. We also present procedures

for calculating some average optimal policies.

Our analysis herein is based on three key results that apply to

more general. Markov decision processes. The first result is a criterion

for the existence of a monotone optimal policy (Proposition 4.1).

Related criteria are discussed in [6) and [8]. The second result

describes when the upper envciope of a family of functions, defined on

the integers, is concave (Proposition 4.2). This result enabled us

to find natural conditions on the reward s r(i,a) that lead to monotone

optimal policies. The third result asserts, under some weak conditions,

that if a Narkov decision process has a discounted optimal policy with

a given structure , then it also has an average optimal policy with the

same structure (Theorem 5.1). Part of this result is an extension of

(2, Theorem 1].

3
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Applications of controlled random walks arise in contexts where

the descriptive theory of random walks is used . In a related paper [ 7] ,

we apply the results herein to obtain optimal policies for controlling

birth and death processes and queues.

2. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Based on Discounted Rewards

In this section we identify conditions under which there exist in-

creasing and decreasing discounted optimal policies for the controlled

random walk. (We use the terms ii~creasing and decreasing to mean non—

decreasing and nonincreasing, respectively.) We also discuss the mono—

tonicity of these discounted optimal policies, with respect to the dis-

count factor.

Here, and throughout this paper, we shall use the notation introduced

above. We shall use a prime to denote the difference operator with

respect to 1, namely u’(i) = u(i+l)—u (i). In particular , we write

r’(i,a) = r(i+l,a) — r(i,a).

Our first result concerns increasing policies. A typical increasing

policy f can be written as

f(i) = a if i < I < Ia+l

where 0 = I < i < ... < I < i = 
~~~. This means that if the walk1 2  ~~~m m+l

is in location I, and I I I < 1a+l’ then action a is taken, i.e.

~~~~~~ 
is selected. Note that the action Increases as I increases.

Also, if 1a — 1a+1 for a particular action a, then this action is never

taken.

Th
~2~~L

2.l. Suppose the following conditions hold.

(1) 
~~~~~~~~~~~~~~~~~ 

q1 < q 2 < ... < q ,

(2) r’(i,l) ~ r’(i,2) < ... ~~~ r’(I,m) < 0 for all I.

(3) r’(i,l) ~ r’(i+l,m) for all 
I.4



Then there Is an increasing ce—discounted optimal policy for the random walk.

We shall prove this a f t e r  we make a few observations. Theorem 2.1

asserts that  there is an a— discounted optimal policy which selects higher

actions in 11, ..., m } as the l oca t i on  i of the walk increases. Under

this policy, because of assumption (1) ,  the selected q is an increasing

funct ion  of I , and the selected p is a decreasing funct ion of i. Their

ra t io  p/q is also decreasing in i , since p1/q 1 
> > P~ /%~. This

means that  the tendency of backward movement of the walk increases as

Its locatIon increases. The ra t io  p/q is like the t r a f f i c  in tensi ty

of a queueing process. We tr ied to prove Theorem 2.1 with (1) replaced

by the weaker condition p1/q 1 
> ... > p~~/q~~, but we were unsuccessful .

We feel  that  (1) cannot be relaxed this  way,  but we do not have a

counterexample to j u s t i f y  this conjec ture .

Note that assumption (1) poses no restriction on the (p,q)’s in

the following important examples.

A Random Walk with a Controlled Ascent.

The p ’S are subscripted so that p1 
> ... > 

~~ 
and = ... = q .

A Random Walk with a Controlled Descent.

The q ’s are subscripted so that ... < q and p
1 

= ... =

These examples are analogous to an M/M/l queue with a controlled arrival

rate and a controlled service rate , respectively. In [71 we show that

these controlled queues are actually equivalent to the above random

walks, and we apply the results herein to obtain optimal policies for

them.

The assumptions (1) — (3) insure that  the value function of the

walk (see (5)) is concave. This Is a key ingredient f or an Increasing

policy (see the verification of (8), (9) and (13), and Proposition 4.2).

Note that (2) and (3) hold If and only 
if5



This is a very weak restriction on the rewards. It Is satisfied , for

example, when

r(i,a) g(a) — h ( i ) ,

where h is convex increasing and g has any structure. Another consequence

of (2) is that the rewards are bounded from above. Namely ,

(4) sup r(I,a) I max r ( 0,a) < ~~~.

i,a a

We shall use the following notation and results in the proof of

Theorem 2.1. We let

(5) V(i) sup Vf(i)= Ef( E c ekr(X
k
,ak)IXo=i),

V (i) sup Ef( ~ 
a r(Xk, aK)IX =i) for n > 1,

n f k-0

and V (I) 0. These are the infinite and finite horizon value functions

of the random walk. Since the rewards r(i,a) are bounded from above,

It follows that the V are finite—valued andn

—~~~ -< Vf (i) < V( i) < for all I and f .

From the theory of Markov decision processes (or dynamic programming)

with upper bounded rewards, we know that the following statements hold.

These come from the basic work of Bellman, Blackwell, Derman, Howard ,

Strauch and others, which are nicely unified and extended in [41 and

[5].

(I) (Existence of Stationary Optimal Policies) An a—discounted optimal

policy exists.

(ii) (OptImality Criterion) A policy f is a—discounted optimal if and

only If

U(i,f(i)) — max U(i,a) f or all I,
a

6
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where

U(i , a) = r(i ,a) + a ~ p(i ,a , j ) V(j ) .
j

(ill) (Optimality Equations) The V and V s a t i s f y  the opt imali ty  equations

V (i) = max{r(i,a) + cz~ P ( i~~a~ J ) V ~ _ 1( j ) }  (n > 1), and
3

V( i )  = max{r(i,a) + ce~ p ( i ,a ,j ) V ( j ) )  for  all I.
a j

(iv) (Value Iteration) For all i , V ( i )  u r n  V ( i ) .

Our last preliminary for the proof of Theorem 2.1 is the following.

Lemma 2 .2 .  If (1) — (3) hold , then V (I) is concave decreasing in in

for each n > 0.

Proof. We shall prove this by induction. Trivially, V = 0 is concave

decreasing . Assume that V is concave decreasing. The Optimali ty

Equations (iii) can be wr i t ten

V +1
(i) max Un (i , a)

where

(6) U ( i ,a) r ( i , a) + a ~ p(i , a ,j ) V 5( j ) .
3

To prove that V~~~1 is decreasing , i t  suf f ices, since V~~~1 is the upper

envelop e of the f u n c t i o ns  U ( ~~, l) ,  ..., U ( , m ) ,  to show

(7) U ’(i,a) < 0 for  all a and i.

And to prove that Vn+l is concave, it su f f i ces, by Proposition 4 .2  (in

Section 4 ) ,  to show

(8) U ’(I , l) I U ’(i , 2) < ... < U ’(i ,m) for  all i , and

(9) U ’(i , l) > U ’ (i+l ,m) f o r  all. i.

W r i t i n g  (6) in terms of the p and q we geta a

Un
(i

~
a) = r (O ,a) + cz[ (l—p )V~(0) + p V ( l )1  for I 0

r(i,a) + cz [q V ( i — l )  + (1~p 
_q
~ )V~ (i) +

for I ~ 1 . 7



Then for any I > 1,

(10) IJ ’(i ,a) = r’(i,a) + a[q V ’(i—l) + (l_P~
_q
~ )V~ ’( i) + p V ’(i+l)]

= r ’( i ,a) + ~[V ’( i) — q~ V~ ” (i_ l )  +

Under our induction hypothesis , the V ’( i )  and V ” (i)  = V ’( i+l)  V ’( i )

are nonnegative. Then from the first and second lines in (10) , and the

assumptions (1) and ( 2 ) ,  it follows that (7)  and (8) are sa t isf ied for

I > 1. The inequality (9) is also satisfied for  i > 1, since by (1)

and ( 3 ) ,

(11) U ’ (i+l ,m) — U ’(i , l) = r ’ (i+l ,m) — r ’( i , l)

+ a[q
1
V~”(i—l) + (l—p 1

—q )V ”( 
~) + Pm~ n”(i

~~~
) ]  1 0.

By similar arguments it follows that (7)  — (9) are ale,o satisfied for

i = 0. We have thus proved that V~~ 1 
is concave decreasing , and this

completes our induction argument.

We are now ready to prove Theorem 2.1 which asserts that  (1) — (3)

imply the existence of an increasing a—discounted optimal policy.

Proof of Theorem 2.1. Consider the policy

(12) f (i )  max {a: U( i , a) max
a

where

U( i ,a) = r ( i ,a) + a ~ p(i,a,j)V(j).
j

By the Opt imality Criterion (ii) , this I is ce—discounted optimal. To

complete the proof , we need only show tnat f is increasing . To do

this It suf f ices, by Proposit ion 4.1 , to show

(13) U’(i,l) I U ’(i ,2) I ... I U ’(i ,m) for  all i.

To this end, note that

U(i,a) =5 r(O.a) + ce[(l_pa
)V(0) + 

~~~~~~ 
for I — 0

1. r(I,a) + a[q~V(i_l) + (l_p~ _q5)V(i) + ~~~~~~~~ for I ~ 1.

Then

8



(14) U’(i,a) r’(O,a) 1 a[V’ (O) — q V ’ (O) + 
~~~~~~~ 

for I = 0

1. rr(i,a) + a (V ’(i) — q~V”(i_l) + P V”(i)] for I ~ 1.

By Lemma 2 .2  and the Value I teration Property (iv) , it follows that V

is concave~ Then using (1), (2), V ’ (O) ~ 0, and V”(i) < 0 in (14),

we obtain (13). This completes the proof.

We have just shown when it is optimal to increase the probability

of backward movement of the random walk as its location increases.

This tends to keep the walk near zero. Our next result describes the

opposite situation in which it is optimal to decrease the probability

of backward movement as the location increases. This tends to push

the walk toward 4°’, accelerating its forward movement as it approaches

4=’. Similar results appear in [6].

Theorem 2.3. Suppose the following hold .

(15) p
1 ~ 

p2 �~ 
... 

~ ~m and q
1 I 

q2 
< ... 

~~~ 
q .

(16) r ’(i ,l) > r ’(i , 2) > ... > r ’(i ,m) > 0 fo r  all I.
- 

(17) r(i,a) is convex increasing in i for each a.

(18) max r ( i , a) ~~ g(i) , wh ere g is a polynomial func t ion  in I.
a

Then there is a decreasing a—discounted opt imal  policy for the random walk.

Note that  th is  resul t  does not require , as Theor ’~m 2.1 does , tha t

p1 + ~~ 
< 1 .  The assumptions (1.6) — (18) are satisfied if r(i,a)

+ g
2~~

), where g
3
(i) is a convex increasing polynomial in I.

Proof. A sufficient condition for the above dynamic programming statements

(I) — (iv) to hold , and the Vf and V to exist , is that

(19) lIm sup E
f
( E aklr(X ,a ) I I X  i) = 0 for all I.

n-’ f kn

9



See [5]. If the g in (18) is of the form g(i) iN, then using the

fact that Pf
(X
k ~~ 

k~X~ = 0) 1, we have

Ef
(Z cek!r(Xk,ak)IIXO 

= 0) 
kn

Similar bounds for this expected value can be obtained for any poly-

nomial g and any value of X0. These bounds are sufficient for (19) to

hold.

Proceeding as in tite proof of Theorem 2.1, we consider the policy

f(i) = max{a: u(i,a) = max U(i,ã)}.
a

This is a—discounted optimal by the Optiruality Criterion. By an induction

argument, as in the proof of Lemma 2.2, it follows that each n—period

value f u n c t i o n  Vn
(I)  is convex Increasing in I. Here the V is convex increasing3

since it is  the upper envelope of U 1(~~,l), ..., 
U~~~1

(~~,m ) ,  which are clearly

convex increasing . Then V(i) = lirn V (i) is convex increasing. Finally arguing

as in the proof of Theorem 2.1, it fo] lows tha t  f is decreasing .

Our final result in this section concerns the monotonicity of

a—discounted optimal policies, with respect to the discount factor a.

This Is of Interest by itself. It is also a key result for obtaIning

average optimal policies from discount optimal policies, which we do

in Section 6.

We shall assume here that we are dealing with a Markov decision

process with transition probabilities p(i,a,j), and rewards r(i,a),

which arc bounded from above. We let

(20) f (i) = ne axCa : U(i,a) max

where

10



U( i ,a) = r(i,a) + cx ~ p(i,a,j)V(i)

According to the Optimality Criterion , the f is an (i—discounted optima l

policy.

Theorem 2.4. If f (1) is increasing in I for each cx , and

r(i,l) > r(i ,2) . . . > r(i ,m), for some i

then f (.~.) < for this i and all 0 - cx < < 1.

Proof .  Let b = 1 ( i ) .  For any a ~ it follows by the definition of

and the hypothesis that

0 < U(i ,b) — U(i ,a) = r(i,b) — r(i,a) + cx ~[p(i,b,j) — p(i,a,j)JV(j)
-I

< cx E [p(i,b,j) — p(i,a,j)]V(j).
3

Using this inequalAty we have

U
B
(i.b) — U

B
(i,a) > U ( i ,b) — U(i ,a) > 0  for cz< ~~ •

From this, and the assumption that is increasing , we get

f~(1) > b = f (i) for cx B. This completes the proof.

Example 2.5. Consider the controlled random walk with rewards

r(i,a) = g(a) — h(I), where h() is convex and increasing , and g(•)

Is decreasing. By Theorem 2.1 there is an increasing a—discounted

optimal policy f , as defined by (20). Then by Theorem 2.4 we have

f (i) < f~ (I) for all cx B and I.

3. Monotone Discount Optimal Policies for Random Walks with State

Dependent Transitions

We have been discussing a random walk in which each step size Is deter-

mined by a pair el probabilities selected from the set {(p11q 1), ..., (p ,q)),

where this set is independent of the location of the walk. We now consider

11
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the case where this set of probabilities is dependent on the location

of the walk. We present analogs of Theorems 2.1 and 2.3.

We shall assume (only In this section) that the random walk

moves as follows. Upon arriving at location I, the following events

occur :

(1) A pair of probabilities (p(i,a), q(i,a)) is selected from the set

{(p(i,l), q(i,l )) ,  . .. ,  (p (i,m),q(i,m))}.

(2) A reward r(i,a) is received.

(3) The next location of the walk is determined by the transition

probabilities

p(i,a,i+l) = p(i,a), p(i,a,i—l) q(i,a), p(i,a,i) = 1 — p(i,a) — q(i,a),

when I > 1, and

p(O,a,l) p(0,a) and p(0,a,O) 1 — p(O,a) when I = 0.

The above series of events are repeated indefinitely.

In the following, we let

d(i,a) q(i,a) — p(i,a).

Theorem 3.1. Suppose the following conditions hold.

(4) p(i,l) ~~ ... > p(i,m), q(i,l) I ... I q(i,m) and p(i,l) + q(i,m) 1 1
for all I.

(5) d ’ (1,1) < ... < d’ (i,m) < 0 and d ’ (1,1) > d ’ (I+l ,m) for all I.

(6) r ’(I ,l) I ... < r’(i,m) 1 0 for all i.

(7) r ’(I ,l) > r ’( i+l ,m) for all I.

Then there is an increasing a—discounted optimal policy for the random

walk.

This Is sImilar to Theorem 2.1, except for the additional condition

(5). It can be proved just as we proved Theorem 2.1. The key steps

12



are to observe the fo l lowing  analogs of (10) and (11) in Section 2:

U ’(i,a) = r’(i,a) 4 x{(l—d ’(i,a))V ’(i) — q(1 ,a)V ”(i—l) 4 p(i,a)V ”(i+l)),

and

U ’(i+l,m) — U ’(i,l) = r’(i+l,m) — r ’(i,l) + (1{q(I ,l)V ”(I l)

+ [1 — p(i+1,1) — q(i+l,m) — d ’(i+l,m)JV ”(i)

+ [d ’( i , l) — d ’(i+l,m)]V’(i) + p(i+2,m)V ”(I+l)} 10

The analog of Theorem 2.3 is as follows.

Theorem 3.2 .  Suppose the following condit ions hold .

(8) p( i , l) > ... > p ( i ,m) and q ( i , l) < ... < q(i,rn) for all I.

(9) d ’(i , l) < ... I d ’ ( i ,m) for  all I.

(10) d(i,a) is concave decreasing in I for each a.

(11) r ’( i , l) > ... > r ’( i ,m) for  all i

(12) r(i,a) is convex in I for each a

(13) maxlr(i,a)I - g(i), where g is a polynomial in I.
p a

Then there is a decreasing a—discounted optimal policy for  the random

walk.

4. CriterIa for Monotone Optimal Policies and Concave Value Functions

In this section we present two key resu l t s  which we used above

for establishing the existence of monotone optimal policies for our

random walk.

We shall consider the general optimization problem

v ( i )  = max u(I,a) for I = 0,1,...
a

where a c {1, ..., m} and u is a real—valued function . An optimal

policy for this problem Is defined to be any mapping ~ from (0,1,...) to

(1,2,... ,m} which satisfies

13



u(i,f(I)) = max u(i,a) for all I.
a

Note that this is an abstraction of the Optimality Criterion in dynamic

prograiwning (recall statement (ii) in Section 2).

Our first result describes sufficient conditions for the existence

of monotone policies. Variations of this,along with other applications,

are discussed in [6] and [8].

~~~~~~~~~~~ Let f be the optimal policy defined by

f(i) = max{a: u(i,a) = max u(i,â)}.
a

The optImal policy f is increasing if

(1) u’(i,l) ~~ u’(i,2) < ... ~ u ’(i ,m) for all I.

The optimal policy f is decreasing if 
-

(2) u’(i,l) > u’(i,2) ~ ... 2 u ’(i,m) for all i.

Proof. Suppose (1) holds, and there is an I such that f(i+1) < f(i).

By the definition of f(i) and (l)x we have

0 ~ u(i,f(i)) 
— u(i,f(i+l)) I u(i+l,f ( i))  — u (i+l ,f(i+l)),

and so u(i+l,f(i+l)) ~ u(i+l,f(i)). But this contradicts the definition

of f(i+1). Thus f must be increasing. The assertion that (2) implies

that f is decreasing is proved similarly.

In order to app ly Proposition 4.1 when u(i ,a) Is a func tion of v

(as we did in Section 2), some knowled ge of the structure of the value

function v may be required . Since v is the upper envelope of u(•,l),

., u(’,m), then v is obv iously convex , increasing or decreasing when

all of the u(~~,a)’s are convex , increasing or decreasing , respectively .

The next result describes conditions under which v is concave.

Proposition 4.2. The function v Is concave if either of the following
-‘ *

conditions hold .

14



(3) u ’(I ,l) I u ’(i,2) I ... I u’(i,m) and u ’(i,l) > u ’(I+l ,m) for all I.

(4) u ’( i , l) .? u ’(I ,2) > ... > u ’(I ,m) and u ’ (i ,m) > u ’(I+l , l) for all I.

Proof. Suppose (3) holds and let f be the optimal policy in Proposition

4.1. Using (3) and the Increasing proper ty  of f we have

v ’(i) = u(i+l,f(i+l)) — u(i,f(i)) > u(i+l,f(i)) — u(i,f(I))

> u’(i,l) > u ’(i+l,m) > u(i+2,f(i+2)) — u(i+1,f(i+2)) > v ’( i+l)~
Thus v is concave. A similar argument shows that v is concave if (4) holds.

5. ~~~~~~~nt?d and Average Reward Optimal Policies of Si~i1ar Structure

If a Markov decision process has a discounted optimal policy with a

special s t ruc ture, then it seems reasonable that there should be an

average optimal policy with the same structure. We shall show that

this is true in a fa i r ly  general se t t ing.  In the next section we

apply this to our random walk.

We shall consider a Markov decision process with rewards r(i,a),

and transition probabilities p(i,a,j) for i,j > 0 and a in some set.

We let IT denote the set of all policies f under which the a—discounted

reward function Vf(i) is finite—valued for all 0 < a < 1, and the

limit

~f(i) 
= u r n  n~~ Ef(~~~

r(
~~

,ak)X O 
= I)

exists for all I, where — < 
~f
(i) < =.

Theoretn 5.1. Suppose the Markov decision process described above has

upper bounded rewards, and there is a set of policies r {f1,f~ , . . . }
in fl such that f Is cx --discounted optimal , where an Is a sequence with

a ÷1. Then
n

(1) sup ~~(i) sup •~(i) for all i.
fril fcr
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If , in addition , F is a f i n i t e  set , then there is a policy f* c F such

that

(2) •f*
(1) — sup c~~(i) for all i.

f cli

The second part of this result is a slight extension of [2, Theorem 1].

The first part is new. The usefulness of Theorem 5.1 is illustrated in

the next result which follows immediately.

5.2. [f the Markov decision process in Theorem 5.1 has an

increasing a—discounted optimal policy for each a, the set of such

policies is finite, and Vf(i) 
—

~~~ for all policies f ~ H, then there

exists an increasIng average optimal policy.

Proof of Theorem 5.1. Suppose for now that the rewards r(i,a) are all

nonposltive. We first note that f or any f c H ,

(3) •f (i) u r n  ( l— cx )Vf
(i) for  all i.

This follows by the well—known Abelian Theorem [3,p.445], when $f(i)

is finite. And It follows when 4f
(i) = —~~~, since

V

(4) (1-a)V
f
(i) < (l_a)E

f(~~~
a
k
r(Xl,~,ak)IX o 

= i)

V

< V 1
Ef

( E a kr(X,K,
a
k)lX o 

i) -
~ ~f

(i) = —
~~~ as a ~ 1,

k=O

where V is the integer part of (l—a)~~ .

Using (3) and the assumption that is cr —discounted optimal, we

have

sup 4’f(i) sup u r n  (1—a )Vf
(i) I lim (l_cx

n
)V
f (i)

fell f d f l n-~-c~ 
n n-$-~

I SU~~ u r n  (1—a )V f (i) sup 4 f
(i) .

fcr n-~ 
n
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Furthermore, the first term In the above Is always greater than or

equal to this last term , and so they are equal. This proves (1).

Now assume that F Is finite . Then there is an f* c F which is

a —discounted optimal f or k = 1, 2, ... where a is some subsequence
nk 

nk

of a~. Using Theorem 1 in [9.p.1811 (for our nonpositive rewards!)

and (3), it follows for any f e H that

4)f(i) Ill-rn (1—cr)V f(i) I~ 4~ 
(i_a

n )Vf*
(i) =

k-*oo k

This proves (2).

We now prove (1) and (2) for upper bounded rewards. Let c be an

upper bound for the r(i,a)’s, and consider the Markov decision process

with rewards i~(i,a) = r(i,a) — c, transition probabilities p(i,a,j),

and average rewards Pf~ 
This process has the same set of a—discounted

optimal policies as the original process, its rewards are nonpositive,

and = c. Thus, by the above

Sup (~f ( i)  = sup (Pf(i) + c )  = sup (q1(i) + c) 
= sup

fell fell ftF fe!’

Nov suppose r is f i n i t e  and f* c I’ is as defined in the preceeding

paragraph. Then

= 

~f*
(1) + c = sup 

~f(i) + c 
= sup cbf(i) for all I.

fell fell

This completes the proof.

6. Monotone Optimal Policies for Random Walks Based on Average Rewards

Theorem 2.1 describes conditions under which there exists an

Increasing a—discounted optimal policy for the random walk. In this

section, we show that these condition , with some minor additions,

are also sufficient for the existence of an increasIng average optimal

policy. A similar result holds for decreasing average optimal policies

17



(based on Theorem 2 . 3 ) ,  but for  the sake of brevity, we shall not

discuss it.

We shall consider the random walk as descrIbed in Sections 1 and

2. In our first result , we use the following conditions .

(1) p
1 ~~ ... > 

~m ’ q
1 I 

... I q ,  and p
1 ÷ q~ 

1.

(2) p
1

> 0 ,q 1
> O a n d p / q < l .

(3) r’(i,l) I ... ~~. r’(i,m) < 0 for all i, and at least one of the

r’(i,a) is nonzero.

(4) r ’(I ,l) > r ’(i+l,m) for all I.

Under these assumptions the average reward

~f(i) 
= lim n

_l
E(~~

1
r(~~ ,a) IX = i)

exists for any policy f and —= I ~~ (i)  < (see Proposition 6.2).

Moreover, ~f
(i) is independenL of i, so we shall simply denote it by

We let I denote the set of increasing a—discounted optimal policies

for 0 < cx < 1. Such policies exist under (1) — (4), by Theorem 2.1.

Theorem 6.1. Suppose the random walk satisfies (1) — (4). Then

sup = sup
f ftl

If, In addition , there is an N such that

r(i,l) > r(I,2) > ... -‘ r(i ,m) for all I ~ N,

then there is an Increasing policy in 1 that is average optimal for

the random walk.

The first assertion says that the increasing policies in 1 yield

the largest average reward , but it doesn ’t say that one of the policies

In I actually attains the maximum reward . The second assertion does.

The assumptions (1) — (4) are essentially assumptiona (1) — (3) in
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Theorem 2.1 with a few minor additions. These additions simply eliminate

some degenera te  cases. S p e c i f i c a lly ,  we assume tha t  at least one of

the r ’( i , a) is nonzero to ru le  out  tlu- case where the rewards do not

depend on i. W i t h  t h i s  c~~ c ruled out , ( 3 )  and (4)  imply tha t  r ( i , a) ~ —~~

as I fo r  a l l  a. We assume q 1 
0 fo r  the sake of brevity. The

ana lys is  presented li&- r & ’  also c a r r i~~$; over  to the  case when some of

the q ’s are zero , but  more d e t a i l s  a re  involved . The p
1 

> 0, in

conjunction with q
1 

0, just eliminates the case in which p
1 

= ... = p = 0)

and each policy determines a walk that is absorbed at zero. Even though

p
1 

> 0, some of the other p ’s may he zero. The 
~~~~~ 

< 1, eliminates

the case in which each policy f determines a walk whose states  are all

transient or null recurrent , and whose average reward = —
~~~ (see

Proposition 6.2). Here any pol icy  is average op t imal .

Proof. i f = —- for all f , then the assertions are trivally satisfied .

Now suppose there is an f with —
~°. it follows that its

a—discounted  reward V f ( i )  > — -- for all i and ~~. Consequently, for

each f I we have V f (1) ~- V
f
(l) ~ -‘ for all i. in addition , 

~~~ 
> 

~~~~

fo r  each f i 1. For i f  not , then  a r g u i n g  as in (4 )  in Section 5 , we

would have V f ( I )  = -“~~. Let I! be the SCL of policies f for which > — .

Then f r o m  Proposi t ion  6 .2 , Theorem 2.1 , and Theorem 5.l ,it follows that

Sup 
~~~~ 

= sup = sup
f f H ~ f c l

We now e s t ab l i sh  the existence of an increasing average optimal

policy. Let a denote the largest action taken by any policy in 1. Let

f be a policy in 1 that takes the action a , and let cx be a discount
0

factor such that f is cx
0—discounted optimal. Let r be the set of

Increasing u—discounted policies f , as constructed in the proof of
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Theorem 2.1, for all ~. < 1. Then Theorem 2.4 yields

= a for all i > min{j > N: f(j) = a} and cx > c x .

Consequently, F is a finite set. Thus from Theorem 5.1 it follows

that there is an increasing policy in I t ha t  is average optimal for  the

random walk.

In the next result we present an expression for the average

reward function of our random walk. We used this in the above proof

and we shall use it again in the next section.

Pron~s~~jon 6.2. Suppose the random walk satisfies (1), (2) and

r ( i ,a) + —~~ as I -~ fo r  all a. Let f be a pol icy ,  and let

= ~11
0

P f ( k ) /~~f (k+l) for  i ~ 1,

and

N ‘f” if Pf(j) > 0 for all

L min{i > 0: Pf(j) 
= o} otherwise.

Case 1. The random walk under f is such that (0,1,... ,N} is a closed

class of positive recurrent  s ta tes  and {N+1 ,N+2 ,. . .} are transient

states if and only if - . (When N ‘ the la t ter  set is nul l . )
i

In this case, the limiting distribution of the walk is

lT
f
(I) = 5 i ~ if I ~ 1

((1 + E )—l if I = 0,
i=

(if N < ~~ , then 1T
1
(i) = y . = 0 for  I > N), and

N

~f (I)  = r (0~ f ( O ) ) i T f (0) + 
~ 

r ( k , f ( k ) ) y
k for  all I.

k=l

Case 2. The random walk under f has all transient or null recurrent

20



states if and only if ~ y. = . In this case c1~f
(i) = —~~ for all I.

1=1~
Proof. The assertions concerning the classification of states follow

by standard arguments f or Markov chains . For the case in which 
~~~ 

<

i
we have

N
q~f (i) 

= 
~ r(k,f(k))ii~~(k) = r(O~ f(O))u f(O) + ~ 

r(k,f(k))y~ .
k=0 k=l

See [l,Corollary 6.2.23.] In this reference the assumption that r(k,f(k))

is bounded can be relaxed : one only needs that the above sum exists

being possible values). In our context , —= ~~ 4~~(i) < ~~.

It remains to prove the last assert ion.  To this end , assume that

= . Let v i (n) denote the number of v is i ts  that  the random walk ,
i

under f , makes to state i in n steps. The r(i,a) is decreasing in i,

and so for each j  > 1,

1 
n 

1
j-l 

1E r ( X ,~, a~ ) = n ~ v .(n)r(i,f(i)) + n E v 1( n ) r ( i , f ( i ) )
k=0 i=0 i=j

-l 
j 1  

1
I r(0,f(0))n ~ v~ (n) + r(j,f(j))n ~ 

v
i
(n)

1=0 i=j

-l
= r(j,f(j)) + n 

~ 
v~ (n)[r(O~f(O)) — 11.

Since each i is transient or null ::current, then n 1v.(n) ~ 0 a.s.

It follows that

~~~ n
_l

E
f
(
°l

r(~~~,ak)~
X = I) < r(j,f(j))

Letting j -÷ yields 41
(i) = —~~ for  all I.

7. Computation of Optimal Average Reward Policies: The Two Action Case

We shall show how to compute an increasing average optimal policy

for a random walk with two control action (p1,q1
) and (p2,q2). We
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discuss the multi—action case in the next section.

in addition to the notation in Sections 1,2 and 6, we let 
~a 

= Pa /cia

and let

n—l
D — — p

2
)(l — p~ )

1E r(i,i)p
1
1 + p

1
[r(n,1) — r(n,2)]

i=0

+ Y p }  + - p 2 ) (~~~~p1
1) Z r ( 1 ,2) P 2

i f l.

For each n(O < n < “ ) ,  we define the policy

1 i f 0 < i < n

2 if i > n .

Note that f (i) 1 and f (i) 2. We also let

ifD > 0  for a l l n > 0
n -

~~

l min {n > 0: D < O} otherwise.

Theorem 7.1. Suppose the random walk with two actions satisfies the

following conditions.

(1) 0 < q1 I q2, p1 > p
2~ p

2 
< 1, and p

1 
+ q

2 
< 1.

(2) r ’( i , l) < r ’( i , 2) 10 for  all i , and r ’( i , a) ~ 0 for  some a and i.

(3) r ’(i , l) ~ r ’(i+l , 2) for  all i.

(4) ~ r(i,2)p2
1 

> -= .
1—0

Then the policy f
~~ 

Is average optimal.

This says that  it is average optimal to select (p 1,q 1) when the

walk is below n~ and to select (p2,q2) 
otherwise. The n* can be obtained

when r ( i ,2) is tractable , say a polynomial in i, by successively computing

until a is reached such that Dn 1 0. Then n* = n. The case

when r ( i,a) — g(a) — hi is discussed below. In the proof of Theorem 7.1

we show that is decreasing in n. This can be used in an obvious
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way to shor ten the procedur4~- for obtaining the n*.

Theorem 7 . 1  is c s s c nt i a i .ly a : p i - c i a l  case of Theorem 6.1. We

added assumption (4 )  l i u r e , bec iiisi without it , any increasing policy

is average optimal. This  f o l l o w s  I rom Theorem 6.1 and the fact that

the average reward for each increasing p o l i cy  is — -
~~‘ , as seen from (8)

and (9) below.

Pr oof of Theorein 7 .1 .  Let 
~ 

denote the average reward of the walk

under the policy f~~(O .< n < ‘~
) .  From Theorem 6.1 it follows that

Sup ~)f 
= SUP ~

f n 
n

Then in order to prove that  the pol icy f
~~ 

is average optimal it suf f ices

to show

(6) p
~~ 

sup ~~~~~~

To this end , we first note that by Proposition 6.2, the l imiting

distribution it~ (.) of the walk under policy f is as follows :

~~(i) = (1— k i~~
’i
’ f or i > 0 ,

and for n �: 0,

ii (i) =ç ~n
(0
~~ i

1 for 0 < I < n

I n-I i-n+l
~ ~n~

0
~~ l ~2 

for i >

where

= 
~ 

~~~~~~ k 
+ 

n—i 
2(1~~ 2

)
~~~U

—l
(Here ~ = 0.) Another application of Proposition 6 . 2 , using the above

k=0

lT t $ , yields
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(7) • - (l-p
1

) E r ( i,l)p
1
1

i=0

and for n > 0,
n-l

(8) 
n 

= 

~~~~ 
~ r(i,l)p1

1 + p
1 

E r (i ,2)p2~~~~
1 l

1=0 i n

Note that

(9) ~ = lim p .
n-~~

We now show that ~ has a global maximum. Using (8) we have
n

n—l
(10) ~ 

- = ~ (0)r (0) { (IT (0) l 
- ~ (0) 1) ! r ( i , l)p 1~n+l n n n+l n n+l

+ p
1

r
5
(~~~~~~~~~,~~ 

- r (n ,2 ) )

n-l -

+ ~l l~n~°~ 
1 

- (O)~~~) ~ r(i 
i—n

2 n+l ,2)P
~ 

}.
i n

From the above expression for  ~~ (O) , we obtain

~ (0) 1 
- (0)

1 n-i
n n+l 

= 
~l 

(p2 
— p

1
)/ ( l  —

and
n-I

1 n 
-l 

- P 2~ n+l (0) 1 
= - k 2) ~ 

k
p iT (0)

l~~k=0

Using these in (10) yIelds

n- 1
— p ~t (O)’ir (O)D ,(11) 

~n+l 
- 

n 1 n n+l

where D is defined above. In light of this factorization , the

will have a global maximum if D is decr-’asing In n. From the definitionn

of D and some algebraic manipulations we can writen
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11 

— -

(12) Dn+i Dn = (0) - iT~~1
(O) ’Jr (n ,1) + c 1

,i 
+1(0) 

1
1c(n+1,l) — r(n+l,2)]

- p
1~~ (0)~~~[r(n,l) 

- r(n , !)] + (~ ~ 
_~~ )~~~~ i~~~~1 

— + p
l
m

Z r(i,2)p2~~~~
1 

- [p
1~~

(0) 1 
— P2

fl
n+l(0

’
~~~~~

2)
i n+l

= iT +1~~~ 
1{i 1r ’(n,l) -

~ r ( l ,2) r 2~~~~~
1 

— r(n+l,2)11.
i=n+l

Under our assumption ( 2 ) ,  we have r ’(n,l) < r’(n,2). And for I > n + 1,

r(i,2) Ir(n+l,2) + (i—n—I)r ’(n+l,2),

so that

Z r(i,2)k 2
i_n

~~ r(n+l ,2)(i - 
~~ 

+ 2
(1 - c2)

2r’(n+l ,2).
i=n+i

Using these expressions in (12) yields

D ÷i 
- Dn 

v
1

(U) ’( 1 
- p 2 )r ’( n , 2 ) ( 1 - 

~2) ~ 0.

This says that D is decreasing, and so from (ii) we know that has

a global maximum .

Suppose t h a t  D > 0 for all i i .  Then 
~ 

is increasing , and recall

tha t  n~ = ‘°. Thus f rom (9) we get

= = sup
n

Now suppose U < 0 for some n. Here the 
~ 

increases until n reaches

= min{n: U < 0), and then it decreases to ~~~~, because of (9).

Consequently, 
~~~ 

= sup ~ . Si n ce these two cases cover all poss ibi lities,
- n

if follows that the policy 
~n* ~ 

average optimal.
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We now consider a special case of the preceding result.

Coo,~J&x.7.2. Suppose the random walk with two actions satisfies

the following conditions.

(13) 0 <  q1 
< q 2, p

1 
> p 2, p 2 < l a n d  p1 + q 2 

< 1.

(14) r(I,a) g(a) — hi, where g(l) > g(2) and h > 0.

Then an average optimal policy is to select (p1,q 1
) when the walk is

below n*, and select (p2,q2) otherwise. The n* is the smallest non-

negative integer n for which Dn 
> 0, where

;~ -~~~ n + cp
1
n 
+ c - p

2
(1) - g(2))/(h (p

1 
- p

2
)(1 - p 2 ) )  if p

1 # 1

+ n(1 + 02)1(1 
- p

2) 
- 2p

2
(g(l) - g(2))/(h(p

1 
- p

2
)) if = 1,

and c — (p
1 

— p
2
)/((l — p

1
)(l — p 2 ) ) .  Furthermore ,

(16) n~ ~~~ p
2 (g ( l )  - g ( 2 ) ) / ( h ( p 1 

- p
2)(l 

- p
1

))  if p
1 ~ 1

[2p
2
(g(1) - g ( 2 ) ) / ( h ( p

1 
- p

2
))] if 

~l 
1.

Proof. By Theorem 7.1 it follows that an average optimal policy is to

select (p1,q1) when the walk is below n* and select (p2,q2) otherwise.

Here

n* ”C  cc ifD > O f o r all rt
n

I inin{n: D < 0) otherwise ,

where

D - - p
2
)(1 - p

2)~~~[g(l)z - h~~~ ip1
1
]

+ p
1
(g(1) — g(2))(p2

p
1~
4(l — P2)

’” + Z J

n-i 1

+ z~ (p 1 
- p 2

) ( g ( 2 ) ( l  - p
2
)~~
1 

- h~~~ iP 2
1
~~~J~

and z — E p
a 11—0
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We shall now show that n* — min {n: D > 0). Using the Identities

~ ~0
i—n 

— ~ (f_fl)~ 2
i~n~l + n E i—n 

= p
2
(l—p

2)
2 
+ n(l—p2)

1,
i n  i n  i n

and

a- 1
E i0

1 
= [1 - 

n 
— n(l_p

1
)p
1
n]/(l_ p

1
) if p

1 ~ 
1

i—0

= n ( n — l ) / 2  if 1,

in the above expression for D , yields

D — p 2 (g(1) - g(2) )(1-p 2 )~~ + h(p1
-p
2
) (1—p

2) 
1
[E i p

1 
- Z P 2 ( 10 2) 1 + ~~

= —h(p
1
-p
2
) (l_P

l
)
~~
1(l_P

2)~~
1
D
n 

if ~ 1

-(l/2)h(p
1
—p
2)(l— p

2Y
1D if p

1 
= 1.

Note that D is strictly increasing and eventually becomes positive.

Consequently,

n* = min(n:  D < 0) = min{n: D > 0).
n~~

The n* is bounded as indicated in (16). This follows since is strictly

increasing, and clearly Dn > 0 when n equal or exceeds the right size of (16) .

8. A Linear Program for Computing Average Optimal Policies
-- --- .— -- — - -- -‘ - — -‘ — - -

The random walk we have been study ing has an i n f in i t e  state space .

Therefore, we cannot compute optimal policies for it by the standard

linear programming or policy improvement procedures for finite state

processes. When the rewards r(I,a) are nice functions of I (like

polynomials), then the average reward for a monotone policy f Is

tractable (recall Proposition 6.2), and optimal policies might be

obtainable via policy improvement. It Is sometimes feasible to com-

pute monotone optimal policies directly from the function $~, 
for a

small number of actions. We actually did this for two actions in
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the last section. In this section, we discuss another approach for

computing monotone average optimal policies. This is similar to the

linear programming approach for finite state processes.

We shall consider a random walk (such as in Theorem 6.1) which

has an increasing average optimal policy f. We assume the following:

Boundedness Assumption. There is an N such that f ( i )  = m for all I ~ N

(i.e. it is average optimal to select (p ,q ) when the walk is in

locations i > N).

We will discuss this below. We also assume, for simplicity, that

> 0 and q ~ 1/2 for all a. This insures that each policy determines

a positive recurrent random walk.

We let i~ {n (I ,a): i > 1, 1 ~~a I m, ir(i,m) = 1 for I ~ N }

denote a randomized policy; the it(i,a) is the probability of selecting

action a when the walk is at location I, and action m is selected for

all i 
~ 
N. Under the policy i~~, the Markov chains {(Xn,a)} and {X}

are positive recurrent. Letting

v(I ,a) — u r n  PiT(X I, a a X = j ) ,

the average reward is
m

(1) $ — E E v(i,a) r( i ,a).
i0 a—i

We can write

(2) v(i ,a) - v(1)n(i,a) and v (I)  - ~ v(i,a)
a 1

where

v(i) — 11w P(X I X — j).

Since iT(I,m) — 1 for I > N , then by Proposition 6.2 it follows that
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(3) v( i) — ~~~~~~~~~~~~ for I > N.

Consequently, expression (1) simplifIes to

N-i m m
a ~ v(i,a)r(I,a) + c(N) E v(N ,a)
i 0  a l  a—i

where

(4) c( N) — ? r (N+k ,n~)(p /q)
k~

k—0 
m

The problem of maximizing the over iT is clearly equivalent to

the following linear programming problem:

N-l m m
max E ~ v(i,a)r(i,a) + c(N) ~ v (N ,a)
v(i,a) 1—0 a—i a l

subject to

E v(O ,a) - ~ [v (O ,a)(l—q ) + v(l,a)q ]
a—i a 1

E v(j,m) 
~ 

[v(j_1 ,a)pa + v( j,a)(l-p -q ) + v(f+l,a)q ]
a—i a—i

for 1 1 i I N—i,

E v(N ,m) — E [v(N_l ,a)pa + v(N ,a) 
~~~~~~ 

+ v(N ,a)(p /q~)qJ
a—i a—i

N-i ni
Z E v(i,a) + (1 — P

~
/ci
~

) Z v (N ,a) = 1
1—0 a—i a—i

0 < v(0,a) < ... < v (N ,a) 1 1 for 1 1 a I m.

Note that the constraints Imply that v(I,a) is the limiting distribution

of {(X ,a )}. An optimal solution v(i,a) of the linear program, determines

(using (2)) a monotone average optimal policy

r’l 1w( i ,a) — v(I ,a)(  E v( i,a)) 0 1 1 ~ N—ia 1

it(i,m) — 1 1 ~~N.



This optimal policy will be a nonrandom policy when the ‘v(i,a)

is calculated by the simplex algorithm , since a nonrandom optimal

policy exists. Note that the reason we could reduce our problem to

a finite variable problem is that the limiting distribution v(1) of

our random walk satisfies (2).

If the Boundedness Assumption does not hold , then the above pro-

cedure is still useful. It may not yield a truly optimal policy ,

but it will yield a suboptimal policy that maximizes over all increasing

policies ii which select action m for all i N. Such a policy , when N

Is large, should be close to being optimal.

We Initially thought that the Boundedness Assumption could be

justified as follows. Consider a random walk with two actions

(~~~~~g~~~~~ ) — 
~~~~~~~~~~~~ ~~2’~ 2~ 

= 

~
‘m’%i~’ 

and rewards ~(i,l) — r(i,l)

and ~(i,2) = r(i,m), where the probabilities and rewards on the left

of the equalities are from the random walk with m actions. Suppose

tha t an average optimal policy for  this  two action problem is to select

(p
~,~1) in location below fl* and select otherwise. (The ñ*

could be calculated as in the previous section.) Because of the way

we defined the two action walk, it appears that n* could be used as N in

the Boundedness Assumption. We tried very hard to prove this, but we

could not.

9. Monotone Optimal PQlicies for Finite Time Horizons 
- .- - -

The above analysis for  random walks over an Infinite time horizon

can also be done for walks over a finite time horizon. To illustrate

this, we shall present a finite time horizon analogue of Theorem 2.1.

We shall consider the random walk as in Sections 1 and 2 for N

time periods. NonstationarY rewards and policies are of interest for
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finite horizons. Accordingly, we let r(i ,a) denote the reward if the

walk is in location I at time n and action a is taken . (In Section 2

this was cznr ( i a) ) A policy is a sequence f = (f 1, 
~~~~~~ 

f~) of mappings

from the state space {0 , 1, ...) to the ac tion space (1, . . . , ml with

the interpretation that action f (i) is taken , i.e. (p f ( ~~) , q f (1) ) Is

selected , if the process is in state i at time n. We let

Vn f (l)  = E
f( ~ 

r k
(
~~~

,ak
) 

~~~~~~~~ 
= i)

k N-n

and

V (I) = sup V f (i) .n n ,

A policy f* is called optimal if

V
flf*

(i) = V
n (i) for  all I.

The Optimality Criterion for finite time horizons asserts that a

policy f is optimal if and only if

U (i,f (i)) max

where

Un(iia) = r(i ,a) + 
~ 
p (i,a,j)V

n i
(j)

and V0 is the zero f u n c t i o n .  We shall consIder the optimal policy f

defined by

f ( i ) — max {a : IJ (i ,a) — max U(I,à)}.

Theotem 9.l. Suppose the following conditions hold .

(1) p
1 

> . . .  
~~ ~~~~~ 

q1 ... q ,  and p
1 + q - 1.

(2)  r ’~~(I~~i) < . .  . ~ r ’n (l ,m) f o r  a l l  i and n .

(3) r ’ (i , l) ~~, r ’ (i+l ,m) for all I and n.

Then f5
(i) is increasing in I for each n.

Proof. This can be proved as we proved Theorem 2.1.
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